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Synopsis
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1. Introduction

A system with 3;V degrees of freedom which can perform harmonic 
vibrations may be treated quantum mechanically in two formally different 
ways. In the first case it is described as 3<V distinguishable oscillators, prefer
ably the normal vibrations of the system. In the second case the excitations 
of the system are treated as a gas of indistinguishable Bose-particles, phonons.

The purpose of the present note is to investigate how far it is possible to 
carry the latter description. In particular we shall try to introduce dynamical 
variables of a single phonon analogous to the variables of ordinary particles 
like spatial coordinate, momentum, orbital angular momentum and spin 
angular momentum.

An analysis of the so called pseudomomentum of a phonon has been 
carried through by Süssmann(1) *2). The concept of phonon spin is discussed 
by Vonsovskii and Svirskii*3) and by Levine*4) in the continuum limit for 
an isotropic and a cubic material respectively. In the present note which 
extends previous work*5), these and other concepts are treated, starting from 
an atomistic description of the vibrating system.

2. Space-time Description of Phonons

Consider a crystal with N atoms. Phonons are introduced on the basis 
of the harmonic approximation in which the crystal is described by the 
Hamiltonian

H = ”2 (Pr frsPs T UrVrslls) (1)

(summation over indices occurring twice being understood).
Here the summation indices r and s run over all 3?/ degrees of freedom, 

i. e. they label both the equilibrium positions of the atoms and the cartesian 
1*
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components of the momenta p and displacements u. The matrix T is diagonal 
(Trs = (1 lmr)ôrs, where mr is the mass related to the r’th degree of freedom) 
but the formalism which we are going to describe is valid also for the more 
general case of non-diagonal T. The potential energy is assumed to be positive 
definite*; Vis a symmetric matrix**.

For convenience we introduce mass-adjusted canonically conjugate 
variables

7lr = (T1/2)rSpS Vr = (T-1/2)rsUs (2)

where T1/2 is the real, symmetric, positive definite square root of the matrix T. 
In our case (T1/2)rs = (l/|/mr)<5rs.

In terms of the new variables the Hamiltonian becomes

H = + VrDrsVs) (3)
where

D = p^VT1'2 (4)

is the so called dynamical matrix of the system. It is a symmetric, positive 
definite and real 32Vx32V matrix.

From the assumed properties of the matrix D it follows that there exists 
one and only one symmetrical, positive definite and real matrix M which 
fulfils the relation

AP = D. (5)

This matrix has a reciprocal A/1 because it is positive definite.

The actual calculation of functions of hermitian matrices, e. g. D1/4, is most 
conveniently done in the following way: The dynamical matrix D is diagonalized. 
The diagonal elements are replaced by their function values, e. g. by their positive 
fourth roots, and finally the matrix is transformed to the original representation. 
In ref/5) this is described in more detail using the infinite linear chain with nearest 
neighbour interaction as an example***.

A mathematical treatment of functions of matrices is given in several textbooks, 
e. g. A. I. Mal’cev®.

By means of M we introduce 32V creation and 32V destruction operators 
b, and br through the definitions

* If needed, this may be enforced by adding, e. g., a small fictitious term proportional to 
urur and letting the proportionality constant go to zero in the final results.

** The most general case, with H containing terms of the type prGrsus as in the presence 
of magnetic forces or Coriolis forces, is considered in Appendix I.

*** We take the opportunity to correct an error in ref.(5); the right side of eq. 4.11 should 
be multiplied by 4.
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l’s (6)

1 | /7l .
(?)

with the inverse relations
1

—=(Mr8Vs + ï(Af_1)rs7rs)= (8)

=
1

—=7 {MrsVs -
|/2fi

(9)

From (8) and (9) together with the canonical commutation relations for 
nr and vr it follows that the b and operators obey the commutation relations 
characterizing destruction and creation operators for Bose-particles

[Z>r,6’] - brb’,-b’br - å„ I
[6r,M - [fc’.fej] - 0. I (

When we introduce (6) and (7) in (3) we obtain the Hamiltonian in terms 
of the creation and destruction operators

H = |(JP)rr + r16t(M2)„Z,s. (II)

Thus H is written as the sum of a zero point energy

h
Eo = - trace (M2) (12)

and an excitation Hamiltonian, the form of which is characteristic for a 
system of non-interacting bosons.

The boson operators br and b}. defined by (6) and (7) are said to destroy 
and create a localized phonon al the atom and at the coordinate axis denoted 
by r. If the system given by the Hamiltonian (3) is large, then the excitation 
energy of the localized phonons is to a large extent localized in the neigh
bourhood of the atom corresponding to the index r (appendix II).

The form of eq. (11) makes it natural to consider the matrix 7iA/2 = fi|/D 
as the Hamiltonian matrix for a single phonon. Henceforth it will be denoted 
by h
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hrs = h(M*)rs = h(\/D)rS.
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(13)

Having defined b and b^ operators and the one-particle Hamiltonian we can 
proceed in principle as in the case of an ordinary boson gas. The ground 
state of the system (including the time dependent phase factor exp(- (i/h)Eot)) 
is denoted | 0> and obeys the equations br | ()> = 0 for all r. From this state 
a complete set of states is obtained by successive application of the creation 
operators. In particular the state | 0) will be said to contain one phonon 
with the position and direction given by s. It is an eigenfunction with the 
eigenvalue s of the dynamical variable

F = br G4)

which may be called the position-direction operator of the phonon.
The most general one-phonon state is

I = 2w(0^ I °> (i5)r

where ipr(E) will be called the Schrôdinger function of the phonon in the 
/•-representation. | |2 is the probability that when exactly one phonon is
present it has the position and direction r. From (14), (11) and (13) together 
with the general Schrôdinger equation

I ¥>> = H I (I6)dt

we find that y>r(/) obeys the one-phonon Schrôdinger equation

(17)

The analogy with the non relativistic quantum theory for ordinary particles 
is nearly complete. The main difference is that the position variable of the 
phonon in this formalism can take on only discrete values, i. e. the equilibrium 
positions of the vibrating particles. Therefore (17) is a difference equation 
in r instead of a differential equation.

Similarly we can discuss states with more than one phonon.

The procedure outlined above is to some extent arbitrary. Starting from cano
nically conjugate coordinates and momenta many linear transformations lead to 
Boson operators. In fact it can be shown that the most general transformation of 
the form
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~ y 2^rs^s

1 1 / A * +
Pr = 71/ 2(Brsbs~ B*sbs)

(18)

which leads to operators obeying the commutation relations (10) is such that (in 
matrix notation)

A = S-1W 1
J (19)

13 = S(1 + zC)W I

where S and C are real and symmetric matrices, while W is a unitary matrix. (The 
matrix A must have a reciprocal matrix in order to ensure that (18) can be reversed).

However, in order to have a reasonable particle concept, the total number of 
particles, n = bfbr, must be a constant of motion under movements described by 
the unperturbed Hamiltonian (1).

If we impose this condition on the transformation and use the Hamiltonian (1) 
with positive definite T and V we find that the matrix C in (19) must vanish, while 
the matrix S must obey the relation

S2TS2 = V (20)

by which the positive definite, real, symmetric matrix S2 is uniquely determined. 
It now readily follows from (18) that all acceptable phonon variables are connected 
by transformations of the type b'r = Ursbs, where Urs is a unitary matrix.

Among the acceptable sets of phonon variables we have chosen a particular 
one (defined by (8) and (9)) as describing spatially localized phonons. In certain 
simple cases, notably when all masses are equal and all diagonal elements of the 
dynamical matrix are equal, the choice is justified by the fact that the excitation 
energy becomes spatially localized to the highest degree possible. In the general 
case this is not necessarily so, but the transformation leading to maximum localization 
of energy cannot then be described in terms of simple functions of the matrices 
T and V. Such a functional relationship is important for the following discussions; 
in all cases we therefore define localized phonons by means of (8) and (9). With 
equal right we might have chosen other transformations which coincide with (8) 
and (9) in case the matrices T and V commute. We could, e. g., have reversed the 
rôles of T and V in the procedure leading from the Hamiltonian (1) to the localized 
phonons given by (8) and (9), or—most symmetrical with respect to kinetic and 
potential energy—we could have chosen a symmetrical A(= S“1) in (18). The actual 
choice agrees most closely with standard methods and concepts described in the 
literature.

In Appendix II the localization of excitation energy is treated in more detail.
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3. Transformations and Dynamical Variables

The most important dynamical variables of a system are those (like 
momentum and angular momentum) which are connected with coordinate 
transformations or symmetry operations. We consider transformations of the 
particle variables ur and pr of the form

Ur = LrsUg I
' Ä (21)

- LrsP« J

where the transformation matrix L is real and orthogonal

L = L-1. (22)

These transformations include translations and rotations of the displacement 
pattern of the system. Special cases are treated in the next paragraph.

Introducing (21) in the Hamiltonian (1) we obtain new matrices T' and 
V' defining the kinetic and potential energy:

T' = LTL1 V' = LVL-1. (23)

They are again real, symmetric and positive definite matrices; consequently 
transformed matrices /)', M’ and h’ together with transformed creation and 
destruction operators b\' and b'r can be defined as before. All matrices like 
D, M and h are seen to transform according to the rule (23) whereas 
vectors like u, n, b^ and b transform like u and p; in particular

br ^rsbs 
by - Lrsb's.

(24)

The ground state is unchanged under this transformation and the phonon 
number operator is unchanged.

The transformation (24) can be written as a contact transformation; in 
fact, we can always find a hermitian operator

0 ~ b'Orsbs (25)
where

0* = o„ (26)
such that (24) becomes

b'r = exp(iÔ) brexp(- iÔ)
(27)

b'r' = exp(z’Ö) &^exp(-z’Ô).
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Each transformation like (21) thus motivates the introduction of a dy
namical variable 0. From (25) we see that Ô commutes with the phonon 
number operator and thus Ô can be said to describe a property of the single 
phonon. If the Hamiltonian (1) is form invariant under the transformation 
(21) the Hamiltonian matrix h commutes with L and thus h' = h. From this 
it follows that the operator exp(z’O) commutes with the Hamiltonian operator. 
In this case it is therefore a constant of motion.

The actual calculation of Ô can be performed according to the following 
procedure (for the proof see appendix III).

a) Find a complete orthonormal set of eigenvectors B* of the matrix L, 
i. e. solve

LrsB* = XaB«. (28)

Since L is unitary, any eigenvalue has modulus 1.
b) For each eigenvector determine a real number 7a so that

= exp(z7a).

c) The matrix 0rs may then be chosen as

O„ >‘(ln(L))„).
a

d) Introducing (30) into (25) we find

Û = 2 lababa
(X,

where 
b7. 2Brbr

r
b[ 

r

constitute a new set of phonon destruction and creation operators.
The state b+(l | 0) is a one phonon eigenstate of the operator Ô with the 

eigenvalue lx.
It is seen that the scheme described is completely analogous to the usual 

transformation theory in the quantum mechanics of particles.
The operator 0 is not uniquely defined by the rules given so far. In fact 

it is evident from the definition of 7a that exp(z'Ô) is not changed when we 
add arbitrary integer multiples of 2% to the numbers la in (30). In each single 
case the definition can be made unique by a suitable convention (e. g. a 
continuity convention for continuous groups or limitation of wavevectors to 
the first Brillouin zone in case of the lattice translation group).

(29)

(30)

(31)

(32)
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It might be considered more straightforward to introduce dynamical variables 
by writing the transformations of displacements and momenta (21) as contact trans
formations,

exp(z'F)zzrexp(—z‘F) = Lrsus I
(33) 

exp(zF)prexp(-zF) = Lrsps. |

In general, however, an operator F satisfying (33) will not be a one-phonon operator, 
i. e. when expressed in terms of the phonon variables b and b\ it will contain terms 
of the form brbs and b,bl. Thus it does not commute with the phonon number 
operator, in contrast to Ô. In particular, F and also exp(zF) may change the ground 
state into a superposition of the ground state and states with phonons present. 
For these reasons, in the general case F cannot be said to describe a property of a 
single phonon.

More specifically we can find under what conditions the operator F can be a 
one-phonon operator. We try a solution to (33) of the form

F — b^-Ffgbg. (34)

Expressing zz’s and p’s in terms of b’s and b^’s by means of (2), (6) and (7) and 
using eq. (Ill, 1) (see Appendix III) we find that a solution of the type (34) exists 
if and only if the matrix L commutes with the matrix T“1/2yf2y-i/2. jf, jn particular, 
L commutes with both the potential and kinetic energy matrices, V and T, the 
equations determining Ô and F become identical, so that F can be chosen equal to Ô.

In the general case explicit solutions to (33) may be written down, but they 
are usually not of much interest. We only mention that if the matrix Ors is anti
symmetric, the following expression satisfies (33):

z
F = ~urOrsps. (35)

fz

This may be proved by means of eq. (111,1) (Appendix III).

4. Application to Phonons in Crystals

To each atom in a crystal belong a displacement vector u and a momentum 
vector p. Introducing phonon variables we get for each atom a three component 
creation and a three component destruction operator which transform as 
vectors under rotation. The equilibrium positions of the atoms will be de
scribed as a lattice with a basis. If there are N lattice points with v atoms in 
the basis we have altogether BAT creation operators forming Nv vectors. An 
atom will be labelled by the lattice vector r and the basis vector c of its equili
brium position which is r + c. The phonon operators are denoted brc and

or in components 6“c and where a labels three cartesian coordinate



Nr. 5 11

axes with unit vectors ea. 
variables

Following eq. (14) we can then define dynamical

r = 2r(blcbrC)

rca

c =^c(blcbrc)
rc

(36)

In the one-phonon case they constitute a complete commuting set of 
dynamical variables with eigenstates | ()> and corresponding eigenvalues 
r', c', and ey,. They may be called the lattice position operator, the basis 
position operator and the polarisation direction operator respectively.

The transformations of the type (21) which can be applied to phonons 
in crystals include permutations of the field vectors among the sites of the 
crystal and changes of the directions of the field vectors. Of greatest interest 
are those which can be described as simple spatial operations. This is the 
case with the following transformations:

a) The cyclic translational group of the crystal lattice applied to the field 
vectors. This is applicable to all ideal crystals. It affects r but not c and ê.

b) Proper and improper rotations of the field vectors without permutation 
among sites. They are applicable to all crystals. They affect ê but not 
r and c.

c) If the lattice of a crystal is mapped into itself by a certain point group 
transformation like rotation, reflection or inversion (possibly made cyclic 
by suitable boundary conventions), this transformation can be applied to 
the field vectors without changing their direction or basis vector. It affects 
r but not c and ê.

d) If the set of equilibrium sites in the basis of a crystal is mapped into 
itself by a certain symmetry operation this can be applied to the field 
vectors without changing their direction or lattice vector. It affects c but 
not r and ê.

We shall study the cases a), b) and examples among c) and d). We will 
show that these cases lead to the introduction of dynamical variables analog
ous to momentum, angular momentum and parity, and to the splitting of the 
latter two into orbital and intrinsic parts (like orbital and spin angular 
momentu m)*.

* Space group transformations, like e. g. screw translations, which are not combinations 
of the cases a) to d) will not be considered in detail. They lead to operators which are not ana
logous to simple operators of ordinary particles.
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Fig. 1. A cyclic transformation in a finite net. Fully drawn arrows and dashed ones are field 
vectors before and after the transformation.

We want to emphasize that none of these transformations imply movement 
of the crystal as a whole. What is, e. g., translated or rotated by the trans
formations (21) is not the atoms but the patterns of displacements, i. e. the 
sound field. It is of course also possible to study translation and rotation of 
the crystal as a whole. This leads to the introduction of the proper momentum 
and angular momentum operators of the crystal. They are not phonon 
operators of the type considered here, i. e. they are not of the form (31) 
(compare (1) and <5>).

5. Translation and Pseudomomentum

A thorough discussion of the concept of pseudomomentum has been given 
by Süssmann (2). We include a short treatment of this concept in order to 
see how it fits into the framework presented above.

The transformation group considered is the cyclic shifting of the sound 
field vectors by integer multiples of the primitive translation vectors of the 
lattice ai, az, and 03 (fig. 1). Let the crystal have the form of a parallelepiped 
with sides Ahtfi, A^aa and N^a^, so that it contains N = N1N2N3 unit cells.
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The wavevector lattice of the crystal has three primitive translation vectors 
gj defined by

gi<*j = (37)

The transformations in question are obtained by repeated application of 
the three commuting primitive translations

brc = b{r_a.yc for r - a, inside the crystal

b'rc = b(r + (Nl_l)a.)c for r - at outside the crystal . (38)
(z = 1, 2, 3). J

We now proceed as described in section 3. The three transformation 
matrices corresponding to (38) have the well known set of simultaneous 
3AT-component eigenvectors (a labels three cartesian components).

^rca = ^exp(-zç r)<5cc,ôaa,. (39)

Here the wave vector q can take the values

3
q = 2 giPilNi (40)

i - 1

where pi is an integer which can take on Nt different values, usually chosen 
so that the possible ç-vectors are those contained in the first Brillouin zone 
of the lattice.

The eigenvalues belonging to (39) of the transformation (38) are exp(z'(? -aj. 
They are already written in the form required by (29), so we can immediately 
write down expressions like (31) for the three operators which generate 
the transformations (38). The result is

=2(9-«/)(^c-^c) (41)
«C

where the new destruction and creation operators are defined by

bqc = p^2exP(- iqv)brc

b\c = p^2exp(^-r)&L-
(42)
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Considering the analogy between equation (41) and the definition of mo
mentum proper in terms of operators generating confinons translations of 
matter, it is now natural to define the vector operator

hq = ^hq(bqc • bqc) (43)
qc

and to call it the pseudomomentum operator. The state bcqc | 0) is said to 
contain one phonon with cell position c, polarisation ex and pseudomomentum 
hq. All possible values of the lattice position operator r have the same 
probability in such a state, compare (42).

For further details, including a discussion of conservation laws, the reader 
is referred to d), <2> and (5).

6. Local Rotation and Spin

Next we want to consider a common rotation of all field vectors around 
the equilibrium position of the atoms to which they belong (compare fig. 2). 
We could of course equally well consider an opposite rotation of the coordinate 
system ex, et/ and ez used to describe the field vector components.

The rotation in question belongs to the continuous group of vector rotations 
and is well known. Let us first consider a rotation with angle 6 around the 
z-axis ez. The transformation of the 6-vectors is then (we leave out the reference

Eigenvectors of this matrix and the corresponding eigenvalues are

to the atoms (r and c) the numbering of which is not changed)

!>“' - (44)
where

cosO -sin 6 0
M - • sin 0 cos 0 0

0 0 1
(45)

1 1 lO 1
= ft

1
{BJ1} — z

0
; = o

(i
; {b«*} ■ z

0 (46)
= expW Â2 = 1 ^3 == exp(- 10)

h = 6 I2 — o h = - 0
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0 0 0 0

Fig. 2. Local rotation. The fully drawn and the dashed arrows are field vectors before and 
after the rotation.

Again proceeding as described in section 3 we find from (32) the new 
basic creation and destruction operators, the latter are:

6+i
1

~^(b* - iby} 
j/2

6° > = < bz

6-1
1

—=(bx + ibv)
J/2

From (46), (47) and (31) the O-operator for this transformation is found to be

Ö = 0((6+1)t6+i - (6-i)f6-i) = -z6(6f x 6)z. (48)

Combining this with the results for rotations around the two other axes 
we are led to define the axial vector operator

•s --.7.b'„xbrc (49)
I rc

(we again introduce explicitly the summation over the atoms (r and c)).
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Comparing with the theory ol‘ rotations for ordinary particles it is natural 
to identify S with an angular momentum, and because it is independent of 
the origin chosen for the position coordinates of the phonons, it should be 
called a spin angular momentum.

As the transformation generated by S’ is a continuous rotation it is to be 
expected that S’ fulfils the usual commutation relations for angular momentum. 
A straightforward calculation confirms this, particularly it is found that all 
one-phonon states are eigenfunctions of

with the eigenvalue 2h2. The one-phonon eigenfunctions of Sz are (leaving 
out r and c)

(b+1)t I ()> = --(bx1[ + iby^) I ()>, eigenvalue + h, 
V

(b°y I 0) = bz^ I ()>, eigenvalue 0,eigenvalue 0

The phonon must consequently be said to be a spin one particle in conformity 
with its vectorial character. The slate (iffi | 0) is said to contain one phonon 
with Sz = at the position r + c.

The F operators (compare eq. (33)) generating local rotations of the 
displacements and momenta are well known from the quantum mechanics 
of ordinary particles. They are the components of the vector operator

(50)

This is obtained from (35) or directly verified by using the commutation 
relations for the displacements and momenta. The operator F divided by 
0/li is immediately recognized as a part of the angular momentum proper 
of the total system. When specialized to the continuum limit, it is identical 
with the spin-operator derived in ref. (3) by means of Noether’s theorem. 
However, in ref. (3) only the isotropic case is treated. The operators O (48) 
and Fz (50) are identical if both the kinetic and potential energy are invariant 
under local rotations. In the anisotropic case F (50) is not a one-phonon 
operator, and the term phonon spin operator should be reserved for the 
quantity (49).
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Zr

(b)

(c) (d)
Fig. 3. A 90° rotation decomposed into successive rotations of the lattice vector r, the field 

vector b and the basis vector c.

7. Point Group Rotation and Pseudo Angular Momentum

Let us consider a crystal, the atomic equilibrium positions of which form 
a structure with an n-fold axis of symmetry through a lattice point, the axis 
is called the z-axis.

We transform the excitation pattern of the crystal by rotating it through 
an angle 2ji/n around the z-axis. This transformation can be split into three 
commuting operations of the types c), b) and d) of section 4 (compare fig. 3)*.

* We only consider an infinite crystal. In order to give meaning to the transformation 
for a finite crystal we would have to choose a special form of the crystal and a special axis or 
to impose suitable cyclic boundary conditions on the transformation.

Mat.Fys.Medd.Dan.Vid.Selsk. 37, no. 5. 2
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The second operation on fig. 3, which is possible for an arbitrary angle, 
has already been treated and has led to the introduction of the spin operator 
(49). The first operation and the third one are cyclic transformations very 
similar to the transformations which led to the concept of pseudomomentum. 
They permute in a cyclic way the field vectors belonging to n equivalent 
positions and first we need only consider the n 6-vectors belonging to such 
a “star” of equivalent points. These points are labelled by the angle 0 (modulo 
2%) between, say, the rrz-plane and the normal from the point to the z-axis. 
For a definite “star” 0 takes values with intervals ‘In/n.

The transformation in question is then

^0 = ^0-27t/n (51)
with the convention that

^0 = ^0 + 271 •

A complete set of eigenvectors and eigenvalues Åm of the transformation 
(51) is (for one “star” and one direction of the field vectors)

= -1 e~im0 f52f6 j/n ( }

Åm _ ei2nm/n

where in is an integer which can lake on n consecutive values. Following the 
scheme of section 3 we find that the O-operator in question is

Ö = G54)
n m

where

bm - -~2boe-‘mO. (55)
l/n 0

As 2%/n in (54) is the angle of rotation and as the analogous rotation operator 
for an ordinary particle is 1/h times the product of the angle of rotation and 
the component along the axis of rotation of the orbital angular momentum 
operator it is natural to call the operator h^mb^- bm the z-component of a 

m
“pseudo orbital angular momentum”. The full expression for this 
operator becomes

Â2 — h^inbms bms (56)
ms

where the summation index s runs over all distinct “stars” of n equivalent sites.
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The resemblance of the pseudo orbital angular momentum to the pseudo
momentum is now evident: each “star” corresponds to a one-dimensional 
cyclic crystal with n lattice sites.

The full rotation shown on tig. 3 is generated by an operator

(57)= exp

The operator J z may be defined so that the three operators Jz, Lz and Sz com
mute and thus have simultaneous eigenfunctions. If their eigenvalues are de
noted by hrri], hmi and hms respectively, we can only conclude from (57) that

nij = ni[ + ms modulo n. (58)

A convenient choice of mj would be such that it is limited to the same range 
of values as mi.

If, e. g., we consider the case n = 4, the twelve independent one-phonon 
eigenstates of Sz, Lz and Jz of a single star can be classified by means of the 
following quantum numbers.

-1 0 1 -1 0 1 -1 0 1 -1 0 1

-1 -1 -1 0 0 0 1 1 1 2 1.2 ( 2

rrij 2 -1 0 -1 0 1 0 1 2 1 2 -1

It is tempting to try to use lifxq (or rather \h(r> q + /i.c.)) as a “pseudo 
orbital angular momentum” but the operator does not generate rotations, not even 
in the limit of an infinite crystal (compare fig. 4). This is seen in the following way:

The operator r is found to generate translations in the g-space just as q generates 
translations in the r-space. In the limit of an infinite crystal q has a continuum of 
eigenvalues and in this limit r and hq resemble (in the ^-representation) the usual 
position and momentum operators (in momentum representation) except for the 
fact that the eigenvalues of q are limited to, say, the Brillouin zone. Denoting a 
vector in g-space by Q it is therefore possible to make the identification

In order to stay within the space of functions which are periodic in the g-space 
the operator q must be identified by a periodic function of Q and not just by Q. 
This explains why hf'/q does not generate rotations except within a sphere which 
does not touch the Brillouin zone boundary and which has its centre at Q = 0. 
The difficulties of lirxq are connected with the fact that the spherical harmonics 
are not orthogonal functions in the Brillouin zone.

2*
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Fig. 4. The fully drawn arrows and the dashed ones show two wave vectors in the Brillouin 
zone before and after a 90° “rotation” generated by hf*q. Only the wave vector which does 

not touch the zone boundary during the “rotation” is really rotated.

8. Inversion and Parity

For a crystal whose atomic sites form a pattern with inversion symmetry, 
we can consider the following transformation of the excitation vectors (compare
fig- 5).

r — c •- b_ (60)
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This can be split into an inversion without changing the direction of the 
vectors and a local inversion b -+ -b. The latter leads to the definition of 
the intrinsic parity which clearly has the eigenvalue -1 for a single phonon. 
The full intrinsic parity operator is the trivial operator (~l)w, where n is the 
particle number operator.

The rest of the transformation (60), i. e.

b'rc = brc, (61)

leads to the definition of the concept of extrinsic parity. It is generated by 
a unitary operator with the eigenvalues 4-1 and -1 for states which are sym
metric and antisymmetric respectively under the inversion (61). Of course 
one could introduce an Ô-type operator in this case too in complete analogy 
with the case of rotation. It does not seem to be useful, however, so we shall 
not write it down explicitly.

If the crystal—not only the pattern of atomic sites—has inversion symmetry 
around r = 0 the total parity is conserved. The intrinsic parity, however, is 
not conserved when uneven anharmonic terms are present in the Hamiltonian.



Appendix I

The usual harmonic Hamiltonian may he generalized so as to contain 
“mixed products’’ i. e. terms of the form prGrsiis. For simplicity only the fol
lowing Hamiltonian will be treated (in this appendix bold face types as u stand 
for a 1 x37V column matrix)

H = - ûÂ)(p - Au) + ^ul)u

A = A* = - À D = D* = I') 

3N degrees of freedom,
D is a positive definite matrix.

(F O

The term Aw may be the result of a homogeneous magnetic field around 
every single particle or a Coriolis field.

This Hamiltonian will be shown to describe a set of one dimensional 
harmonic oscillators just as the usual harmonic Hamiltonian. In order to 
show this the Heisenberg picture will be used.

The equations of motion are now

u = p - Aw

p = - (Z> - A2) w - Ap.
(L 2)

This is a system of linear first order differential equations with constant 
coefficients. In order to show that these equations have a complete set of 
harmonic solutions new variables are introduced

r = w w = r

s = I) F2(p + Au) p = - Ar

I-2A Z>i/2| |r| lr| 
PI 1-B1/2 0 I PI “ “Pf

The Hamiltonian may be expressed by r and 5 in the following ways
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The matrix iE is a 6Nx6N dimensional and hermitian matrix and can 
consequently be diagonalized by a unitary matrix

sr = ira r'r = rrf = 1

£? = a diagonal matrix, Q = Ï2*.

J (1.6)

The matrix D1/2 has no eigenvalue equal zero and eq. (I, 4) shows therefore 
that E has no eigenvalue equal zero. It is also immediately seen that if (£„, zcor) 
are corresponding eigenvectors and eigenvalues of E, then (£*, — iwj are 
also corresponding eigenvectors and eigenvalues of E. Il is therefore possible 
to choose r and Q in the following way

»-I." .’J (I- 7)

co is a 3Nx3N, positive definite and diagonal matrix.
In order to separate the Hamiltonian we introduce new variables / and/+

Ui i/r (I. 8)

The operators (/^)a and (f)a are hermitian conjugate operators because (r)^ 
and (s)ß are hermitian operators.

If u and p are replaced by /^ and / then the Hamiltonian (I, 5) will be

h - i(7w/+/*“2/)- (I. 9)

In order to show that H really is separated into one-dimensional systems, 
it is necessary to study the commutation relations of / and/'. After some 
lengthy calculations the following result is found

[(/)a>(/T)^l =
(I, 10)

Now destruction operators of phonons in stationary states can immediately 
be constructed
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■ 1/ A°(/)“

Il = !£«>«(%+!) 
a

= 0 = Öxß

In cases where the matrices A and 1) of the Hamiltonian (I, 1) commute 
it is possible to choose destruction operators for localized phonons of the 
form (8) where

AZ = (Z) - A2)1/4 (1,12)

can be used (note that - A2 has no negative eigenvalues). In the general case 
it does not appear very usefid to introduce localized phonons, at least not 
localized with respect to direction.

The whole question of phonons and magnetic fields is not an important 
one because the most essential result of a magnetic field will be a change of 
the electronic structure, i. e. a change of the dynamical matrix Z). The reason 
for this is that the charge-mass ratio is much larger for the electrons than 
for the nuclei. It may, however, be of some importance to realize that a 
homogeneous magnetic field itself is not an anharmonic force.

(b H)

Appendix II

The most reasonable way to study how phonons are localized is to study 
how the corresponding excitation energy is localized. This means that the 
matrix elements of prps and urus must be studied. In the usual case where 
the matrix 7’ (1) of the kinetic energy is a diagonal matrix, 7ir and vr (2) 
can evidently be used instead of pr and ur and this will be done here.

If |A> is a normalized state vector containing a definite number of localized 
phonons (8) (9), i. e. if |A> is an eigenvector of all operators b^br, then a 
short calculation gives these results:

<A|Vs|A> - fi2X(M,s«A|fe’6,|A>-H) (H. O
t

<4 I I A> - /12(M-i)rtO/-%«A|6’6(|.4> + D (11,2) 
t

<A|H|A> = /i2(M2)1(«A|b*6,|A> + f) (11,3)
t

<A|H|A> - 2<A|^tJr(|A> (11,4)
t st
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Il is seen that the energy of |A> is, as expected, divided into two equal 
parts, a potential energy part and a kinetic energy part.

The excitation energy of a phonon created by from the state |A> is 
now determined by the increment in the matrix elements (II, 1) and (II, 2) 
when b^bu is increased by one. In particular, that part of the kinetic exci- 
ation energy which belongs to the r’th degree of freedom is (from II, 1)

^kin,r = <H<A I I A> = ±h(Mru)2 (II, 5)

Thus the kinetic excitation energy of the phonon created by bl would be 
strictly localized if and only if M were a diagonal matrix; but then D = M4 
would be a diagonal matrix too, and this is clearly not true. The kinetic 
energy connected with “localized” phonons is therefore not strictly loca
lized, but if j\Irs is small when the atoms to which r and s belong are rather 
far apart then it is quite reasonable to call the phonon localized. As a matter 
of fact in the case of sufficiently large systems Drs will usually be small when 
the atoms to which r and s belong are sufficiently far apart, and this feature 
will, more or less, be preserved for functions of I), e. g. M = D1^ (reasons for 
this will be given later).

Another way to study the localization of “localized phonons” would be 
to study the transitions between different states of localized phonons. This 
will lead to the study of the matrix elements of the Hamiltonian H or according 
to eq. (II, 3) the matrix elements of M2.

From the preceding considerations it is seen that the localization of 
“localized phonons” is connected with functions of D. We shall not give 
any real proof but only sketch how one may investigate to what extent it 
follows that if Drs is small when the distance between r and s is large enough 
then the same is, more or less, true for functions of D. We shall limit ourselves 
to the case where

Drs = 0 when distance (r,s) > d. (H, 6)

It follows immediately that

(Dn)rs = 0 when distance (r,s) > n x d, n = 1, 2, 3,. . . (II, 7) 

Polynomials of D will therefore have the wanted property.
If the eigenvalues of D are such that a function /’(.r) may be approximated 

by a polynomial of x for x equal to any of the eigenvalues of D, then f(D) 
may be approximated by the same polynomial in D instead of x. This is 
most easily seen in a representation where D is a diagonal matrix. Approxima- 
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tion by polynomials gives now an explanation of the said property of functions 
of D.

Instead of giving examples using the approximation by polynomials only 
a few numerical results will be given. For some simple models of crystals 
it has been calculated how much of the kinetic excitation energy of a localized 
phonon belongs to the same degree of freedom as the phonon; this means 
(see II, 5) that (Jfrr)2/(3I2)rr has been calculated. The examples are:

1) A harmonic, infinite, one-dimensional and diatomic crystal with nearest 
neighbour interaction. The masses are mi and ma, and the phonon is localized 
at the atom with mass mi. Except for mi/1112 = 1 numerical integration is 
necessary.

0.1 0.5 1 2 10

0.978 0.938 0.914 0.892 0.865

It is seen that a phonon is better localized at a light atom than at a heavy 
atom, but the kinetic energy part of the excitation energy is in all cases quite 
well localized.

2) A harmonic, infinite, two-dimensional and hexagonal crystal with one 
atom in the basis and nearest neighbour interaction.

Numerical calculations have shown that

(Mrr)2/(M2)rr ~ 0.97.

3) This is a Debye model with a “spherical” Brillouin zone and only 
one sound velocity. The model is not very realistic but particularly in one and 
three dimensions many calculations are easily performed.

--------------------------- 1-dim. 2-dim. 3-dim.

( M rr)2K^2)rr 8/9 24/25 48/49

Although the interaction range of a Debye model is long it is found that 
the kinetic excitation energy of a localized phonon is well localized. Note 
that the degree of localization increases with the number of dimensions.
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Appendix III

Below is shown that the operator Ô (31) generates the transformation (27) 
of the destruction operators br.

First we define by induction an operator [A, B]W for all integers n > 0 
(A and B are usual operators)

[A, BJC») = B [A, B](D = AB-BA

[A, B](»+D = [A, [A, BJWJW.

We have now the following identity*

00 1
exp(A)B exp(-A) = 2 [A,B]<re> (= exp([A,B])). (Ill, 1)

n = 0Îi!

Here the last expression is to be understood in a purely formal way.
A proof of the identity is easily constructed using the formula

[A,B](re> = 2 (-l)” + v|Zn^AvBAra_v (III, 2)
v = 0 \ v /

which is found by induction.
Using the commutation relations (10) for bx and b* (32) it is found by 

induction that
= (-iyibxöxß n > 0.

The transformation of ba is now immediately accessible

exp(zÔ)&a exp(-zÔ) = exp(-z7a)6a = Å*bx.

The transformation of br is consequently

exp(iÖ)fcr exp(- ZÖ) - 2LrsBfB?bt - 2L„b, q. e. d.
a ocst s

* See F. Hausdorff (7). A more recent treatment is given by Wilhelm Magnus et al. (8).

IL C. Ørsted Institute, Physics Laboratory I,
University of Copenhagen, Denmark.
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